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Abstract
Language can have a powerful effect on how people experience events. Here, we examine
how the languages people speak guide attention and influence what they remember from a
visual scene. When hearing a word, listeners activate other similar-sounding words before
settling on the correct target. We tested whether this linguistic co-activation during a
visual search task changes memory for objects. Bilinguals and monolinguals remembered
English competitor words that overlapped phonologically with a spoken English target
better than control objects without name overlap. High Spanish proficiency also enhanced
memory for Spanish competitors that overlapped across languages. We conclude that
linguistic diversity partly accounts for differences in higher cognitive functions like
memory, with multilinguals providing a fertile ground for studying the interaction
between language and cognition.

Teaser
Linguistic competition within and across languages changes memory for visual items,
showing language and memory are intertwined.
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Introduction

We often rely on language to remember the details of past events. For example, mnemonic
devices that are linguistic in nature use acronyms and rhymes to help improve memory. Memory
and language are so closely linked that even hearing single words can change how we remember
events. When hearing a spoken word unfold over time, a listener activates several related
candidates before ultimately accessing the correct word (1, 2). For example, as the word clock is
heard, related words that sound similar (e.g., clown) are also activated and act as phonological
competitors (3). Words with many competitors (i.e., those with higher phonological neighborhood
density) are generally identified more slowly than words with few competitors (see (4) for
review). Critical for the present study, bilinguals have been shown to activate competing words in
both of their languages, resulting in linguistic competition within and between languages. For
example, bilinguals are slower to recognize interlingual homophones (words that overlap in
phonology but not meaning across languages, e.g., English sue and French sous; (5)). Similar
effects of competition across languages have been observed for words with partial phonological
overlap (e.g., clock-clavo, nail in Spanish) (6-8).

While the dual-language activation of competitors is an established effect, little is known
about the long-term cognitive consequences of continuously accessing competing words in two
languages. Recent research indicates that the activation of competing labels within a single
language can enhance memory for corresponding visual images (9). Despite evidence for the
interactivity of language and memory within the monolingual mind, our current understanding
does not account for the diversity in language experiences seen throughout the world. Here, we
test whether knowing multiple languages improves visual memory for linguistic competitors
through the co-activation of labels that overlap within and across languages.

The activation of language in the mind can be studied by tracking eye movements (10,
11). In visual search experiments, participants typically hear a word and find the matching item
among an array of object images. Crucially, the other objects in the array can be manipulated to
resemble the target item visually or linguistically. For example, when asked to find a beaker
among other objects, participants look more at objects whose names overlap (e.g., beetle) or
rhyme (e.g., speaker) with the target word than at unrelated objects (e.g., carriage) (1). Increased
eye movements toward related objects reflect activation of competing labels, showing that
linguistic overlap with a target can impact visual search (2, 12).

During visual search, bilinguals look more at competitor objects that overlap
phonologically in both of their languages (6, 7). Effects of between-language competition are
robust across languages (13, 14), modalities (15, 16), and levels of processing (e.g., phonological,
lexical; 6, 12), and can even be observed without overt linguistic cues (18, 19). There is also
significant interactivity between linguistic and non-linguistic systems, and bilingualism is known
to play an important role in higher-order cognitive domains like decision-making, creativity, and
memory (20-24). The current study examines the relationship between language and other
cognitive systems by measuring the impact of phonological competition on episodic memory.

Episodic memory is the recollection of specific events and their contexts, and it is often
measured by presenting participants with words or items to be remembered (i.e., memory
encoding) and asking them to recall and recognize them later in the experiment (i.e., memory
retrieval). Visual search experiments show that the more objects are looked at during memory
encoding, the better they are remembered later on (25, 26). Since linguistic competition between
items increases looks to competitors, we predicted that phonological competitors encountered
during a visual search task would be remembered better than control objects without phonological
overlap (Fig. 1).
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Fig. 1. Bilinguals activate phonological competitors in both languages. If this lexical
activation facilitates visual memory for corresponding objects, then bilinguals will remember
phonological competitors better than objects without phonological overlap.

Eighty-four Spanish-English bilinguals and 42 English monolinguals first completed a
visual search task while their eye movements were tracked (see Table 1 for participant
demographics). On each trial, an English auditory target (e.g., a clock) was identified from among
four visual objects which included an English within-language competitor (e.g., a clown), a
Spanish between-language competitor (e.g., a nail, clavo in Spanish), or a non-overlapping
control item (e.g., a mirror; Fig 2A). Targets and their respective phonological competitors shared
at least two initial phonemes at onset (also known as cohort competitors). Participants were then
tested on their recognition memory of previously-seen items (Within-language English
Competitors, Between-language Spanish Competitors, Control Items; Fig 2B). The effects of
bilingualism, phonological competition, and eye gaze on item memory were examined with
generalized linear mixed-effects models using recognition memory accuracy as a binomial
outcome variable. Spanish proficiency was used as a measure for bilingualism with participants
being split into three groups: High-Spanish Bilinguals (N = 43), Low-Spanish Bilinguals (N =
41), and English Monolinguals (N = 42).
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Fig. 2. Participants completed a visual search task and then a recognition memory task. (A)
Examples of visual search trials for each condition. Competition trials (top row) included either
English within-language (e.g., clock-clown) or Spanish between-language (e.g., clock-clavo)
phonological competitors. Competition trials were compared to control trials without
phonological overlap (e.g., clock-mirror), while filler trials masked the experimental manipulation
during the encoding phase. (B) Recognition Memory Task. Memory for each competitor and
control item was assessed by asking participants whether they remembered seeing items
previously (OLD) or not (NEW).

Results
Recognition Memory for Visual Items

We examined the effects of Competition Type (Within-language, Between-language,
Controls) and Language Group (High-Spanish bilinguals, Low-Spanish bilinguals, English
monolinguals) on participants’ recognition memory of competitor and control items.

Within-language Competition. Recognition memory for English competitors (M = 28.8%,
SE = 3.3) was significantly greater than for control items (M = 18.5%, SE = 2.3, Estimate = 0.58,
SE =0.20, p = 0.004; see Supplementary Table S1 for full model output) suggesting that within-
language competition during visual search facilitated memory for competing objects. Tukey-
adjusted pairwise comparisons showed English competitors were remembered significantly better
than control items by monolinguals (Estimate = -0.64, SE = 0.26, z = -2.47, p = 0.037; see Fig. 3)
and High-Spanish bilinguals (Estimate = -0.73, SE = 0.25, z = -2.96, p = 0.009), but not by Low-
Spanish bilinguals (Estimate = -0.38, SE = 0.24, z =-1.62, p = 0.238). Prior work has shown that
visual (e.g., shape, color) or semantic (e.g., category) overlap with targets can facilitate encoding
of competitor items into memory (27, 28). The observed effect of phonological competition
indicates that spreading activation from visual objects to overlapping linguistic representations
can alter memory even when overlapping features are not present in the display itself.

Between-language Competition. The effect of between-language competition on
recognition memory was influenced by language group and cognitive abilities, as seen in a three-
way interaction between Competition Type (Control vs. Between), Language Group
(Monolinguals vs. Bilinguals), and Verbal Working Memory. When controlling for cognitive
abilities, Tukey-adjusted follow-up comparisons revealed that High-Spanish bilinguals
remembered Spanish competitors (M = 31.4%, SE = 4.8) significantly better than control items
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(M = 18.0%, SE = 3.4, Estimate = -0.53, SE = 0.22, z =-2.41, p = 0.042; see Fig. 3). Memory for
Spanish competitors and control items did not differ for bilinguals with low Spanish proficiency
(Estimate = 0.14, SE = 0.21, z = 0.66, p = 0.788) or monolinguals (Estimate = 0.34, SE =0.23,z =
1.48, p = 0.300), indicating that the effect of between-language competition is contingent on the
activation of Spanish labels rather than a product of confounding visual or semantic features.
Previous findings have demonstrated that bilinguals show greater competition from their first
language upon hearing a second language as compared to competition from a second language
when hearing their first language (6, 7). In the context of our experiment, in which only English
was used, higher levels of Spanish proficiency were likely needed to activate Spanish labels and
promote item encoding.

When exploring the effects of cognitive abilities, we found that higher verbal working
memory predicted a greater between-language competition effect on memory in bilinguals but not
monolinguals. This trend was driven primarily by High-Spanish bilinguals, where the effect of
between-language competition on memory increased as verbal working memory increased
(Estimate =-0.33, SE =0.14, z = -2.33, p = 0.052). Verbal working memory did not impact the
effect of phonological competition on memory for Monolinguals or Low-Spanish bilinguals (ps >
0.1). Taken together, these results suggest that both high Spanish proficiency and high verbal
working memory promote activation of Spanish labels.

Fig. 3. Recognition memory accuracy (%) for competitor and control items. Memory for
within-language English competitors (orange) was better than for control items (grey). Memory
for between-language Spanish competitors (blue) was better than for control items (grey) for
High-Spanish bilinguals. Note: Significance denotes Tukey-adjusted pairwise comparisons while
controlling for Verbal Working Memory and Nonverbal 1Q (**p < 0.01, * <0.05). Error bars
represent the standard error of the mean.

Eye Movements during Encoding

To further investigate the role of label activation during encoding, we examined whether
competitors were fixated more than controls during the visual search trial.

Within-language Competition. Growth curve analyses (29) revealed that participants
spent more time looking at English competitors than at control items (Estimate = 0.006, SE =
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0.001, t=6.42, p < 0.001), confirming that within-language competition promoted greater
attention towards competitor items that overlapped with the target in English (Fig. 4A; see
Supplementary Table S2 and Supplementary Results for GCA model output) Monolinguals
showed a greater within-language gaze effect (i.e., more looks to English competitors than
controls) than bilinguals (Estimate = 0.007, SE = 0.002, t = 3.53, p < 0.001). Tukey-adjusted
follow-up comparisons revealed that the effect of English competition was significant for
Monolinguals (Estimate = -0.010, SE = 0.012, z = -5.88, p < 0.001) and High-Spanish bilinguals
(Estimate = -0.004, SE = 0.001, z = -2.80, p = 0.014), and marginal for Low-Spanish bilinguals
(Estimate = -0.003, SE = 0.001, z = -2.22, p = 0.068).

Between-language Competition. High-Spanish bilinguals showed a greater between-
language competition effect on fixations than Low-Spanish bilinguals (Estimate = -0.010, SE =
0.002, t = -4.89, p < 0.001). Tukey-adjusted follow up comparisons revealed that High-Spanish
bilinguals spent more time looking at Spanish competitors than control items (Estimate = 0.007,
SE =0.001, z =-4.61, p < 0.001), suggesting between-language competition from Spanish
promoted greater attention towards Spanish competitors. There were no significant differences in
looks towards Spanish competitors and control items in bilinguals with low Spanish proficiency
or monolinguals (ps > 0.1). These findings support our interpretation that the effect of Spanish
proficiency on memory is likely driven by variable degrees of between-language competition
experienced during the encoding stage. High, but not low proficiency bilinguals showed
phonological competition from Spanish competitors during encoding, which subsequently
enhanced competitor memory at retrieval.

Effects of Eye Movements on Item Memory

To test whether effects of competition on memory were predicted by visual attention, we
added a measure of relative competitor gaze during encoding to our memory models. As
expected, the enhanced memory of competitor items was partially explained by increased eye
movements to competitors during the visual search task, indicating that greater attention to a
competitor during encoding resulted in better subsequent memory for that item.

Within-language Competition. A two-way interaction revealed that the effect of
Competition Type (Control vs. Within) on recognition memory was moderated by Relative
Competitor Gaze to English competitors (Estimate = 0.20, SE = 0.09, z = 2.23, p = 0.026; see
Supplementary Table S3 for full model output). Tukey-adjusted follow-up comparisons showed
that recognition memory for English competitors increased with more time spent looking at
English competitors (relative to control items; Estimate = 0.17, SE = 0.06, z = 2.76, p = 0.006;
Fig. 4B). In contrast, relative competitor gaze did not predict memory for control items (Estimate
=-0.03, SE = 0.07,z =-0.43, p = 0.665). Therefore, the effect of within-language competition on
memory for English competitors was predicted by the effect of within-language competition on
visual fixations. The effects of Competition Type and Competitor Gaze did not significantly differ
across the three groups (Competition Type x Competitor Gaze x Language Group: x%(2) = 1.32, p
=0.516).

To determine whether the memory advantage for English competitors was contingent on
preferential fixations to the competitor, we examined the effect of Competition Type at the
median Relative Competitor Gaze (-0.15) when competitors were not looked at more than the
controls. A significant effect of Competition Type revealed that even without a competitor gaze
effect, participants still showed better recognition memory for English competitors (M = 26.9, SE
= 3.4) than for control items (M = 17.1, SE = 2.4, Estimate = -0.58, SE =0.23,z=-2.54, p =
0.011). It is possible that within-language phonological competition may facilitate memory to
some extent without differences in overt fixations (30). Finally, we found a two-way interaction
between Competition Type (Control vs. Within) and Nonverbal 1Q (Estimate = 0.25, SE = 0.10, z
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=2.57, p = 0.010), suggesting that greater Nonverbal 1Q predicts a larger recognition memory
effect for English competitors when controlling for eye-movements.

Between-language Competition. A comparable effect of relative competitor gaze was
observed for Spanish competitors, which was moderated by language group. A significant
interaction between Relative Competitor Gaze and the second Language Group contrast (Estimate
=-0.53, SE = 0.23,z =-2.27, p = 0.023; see Supplementary Table S4 for full model output)
indicated that the positive effect of Spanish competitor gaze on competitor memory was
significant for High-Spanish bilinguals (Estimate = -0.42, SE = 0.14, z = -3.07, p = 0.002), but not
for Low-Spanish bilinguals (Estimate = -0.28, SE = 0.17, z =-1.68, p = 0.093) or for English
monolinguals (Estimate = 0.03, SE = 0.18, z = 0.155, p = 0.877; Fig. 4C). The dissociation
between Spanish competitor gaze and memory for the latter groups suggests that spending more
time looking at Spanish competitors is not in itself sufficient to elicit a Spanish competition effect
on memory. Rather, it may be the case that once a Spanish competitor is looked at, the listener’s
level of Spanish proficiency moderates the extent to which it is encoded into memory.

Fig. 4. Phonological competitors were looked at more, which predicted subsequent
recognition memory. (A) Timecourse of eye movements towards competitor and control items
during encoding. Monolinguals and bilinguals looked more at English competitors (orange) than
at control items (grey) during the visual search task. High-Spanish bilinguals (but not
monolinguals or Low-Spanish bilinguals) looked more at Spanish between-language competitors
(blue) than at control items (grey). (B and C) Effects of eye gaze on recognition memory
accuracy. (B) Recognition memory for English competitors increased with more time spent
looking at English competitors (relative to control items). (C) High-Spanish bilinguals’
recognition memory for Spanish competitors increased with more time spent looking at Spanish
competitors (relative to control items), suggesting both attention and high language proficiency
are needed to encode between-language competitors.

Discussion

The current study was designed with two goals in mind. The first was to investigate how
phonological competition during encoding impacts memory for distractor items in a visual scene.
The second was to understand the role of language experience and dual-language activation on
memory. We found that both English monolinguals and Spanish-English bilinguals remembered
competitor items that overlapped within-language in English (e.g., candle-candy) better than
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control items without overlap (e.g., candle-wing). We also found that, in bilinguals with high
Spanish proficiency, between-language competition from Spanish (e.g., candle-candado)
facilitated recognition memory of competitor items. Higher Spanish-language proficiency likely
lowered the activation threshold of Spanish labels, resulting in greater between-language
competition, which translated to better recognition memory for Spanish competitors. The
enhanced memory for competitor items was partially explained by visual attention to competitors
compared to control items during encoding. Overall, we found that the effects of phonological
competition on memory were influenced by intrinsic characteristics like participants’ language
backgrounds and cognitive abilities, as well as by extrinsic properties like the language of the
experiment and the type of competition (within- vs. between-language).

Our finding that within-language competitors are remembered better than control items is
consistent with research showing that feature overlap with targets during visual search can
facilitate encoding of competitor items into memory. Most previous studies, however, have shown
an effect of visual or semantic competition on memory, manipulating the competitors to resemble
target items in category, shape, or color (27, 28). Our results show that phonological competition
during visual search impacts long-term memory. This adds to the small, but growing body of
evidence that co-activated labels during speech comprehension can have long-term consequences
for higher-order processes like memory (31).

As has been found for semantically- and visually-similar items, our findings suggest that
phonological overlap may promote greater attention towards competitors, facilitating encoding
and subsequent memory. During the visual search task, our participants looked at competitors
more than control items, which then predicted how well competitors were remembered. This is in
line with visual search experiments showing that incidental encoding of distractors is largely
predicted by fixations (26, 27). Eye movements are considered to be a behavioral marker of
attentional deployment, a crucial cognitive process in memory encoding (32).

Our findings suggest that language proficiency plays a key role in how phonological
competition impacts memory. Previous studies have demonstrated that bilinguals show greater
competition from a first language (L1) upon hearing a second language (L2) as compared to
competition from an L2 when hearing an L1 (6, 33). Furthermore, the strength of L2 activation
while processing an L1 depends heavily on L2 proficiency (34, 35). Similarly, we found that
Spanish-English bilinguals with high Spanish proficiency showed phonological competition from
Spanish competitors during encoding, but those with low Spanish proficiency did not. In the
context of our experiment, in which only English was used, higher levels of Spanish proficiency
were likely needed to activate Spanish labels and promote item encoding. In fact, co-activation of
Spanish competitors during encoding (i.e., fixations) predicted subsequent recognition memory
only in bilinguals with high Spanish proficiency, suggesting that both high language proficiency
and fixations may be necessary to encode between-language competitors. This could explain why
even when Spanish competitors were looked at by participants with low Spanish proficiency (i.e.,
English monolinguals and Low-Spanish bilinguals), they were not remembered better than control
items.

Interestingly, we did not find a significant memory effect for English competitors in the
Low-Spanish bilingual group despite having comparable English proficiency to the High-Spanish
bilingual group. One possible explanation stems from the relative language balance of our Low-
Spanish bilinguals. Indeed, this group was largely balanced in English and Spanish across
proficiency, exposure, and age of acquisition (see Table 1). Recent evidence suggests that
balanced bilinguals may have increased inhibitory control compared to unbalanced bilinguals due
to more frequent exposure and use of both languages (36, 37). Inhibitory control is a core
executive function which allows the suppression of task-irrelevant information and behaviors. If
our balanced bilingual group had increased inhibitory control, they could have suppressed
distractor items in the visual search task better than other groups, leading to reduced memory for
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competitor items. The current study did not include measures of inhibitory control, limiting our
ability to test this hypothesis. Future work could include objective measures of inhibitory control
to examine the interaction between language experience and executive function on episodic
memory. Our findings suggests that co-activation of phonological competitors drives their
encoding into memory, but this relationship may be modulated by absolute and relative language
proficiency levels and executive function abilities.

Although inhibitory control was not measured in the present study, individual differences
in verbal working memory and nonverbal 1Q influenced the relationship between phonological
competition and memory. Recognition memory of between- but not within-language competitors
varied as a function of verbal working memory. In contrast, greater Nonverbal 1Q was associated
with a larger within-, but not between-language competition effect. Together, these findings raise
the possibility that between- and within-language competitors may be encoded differently, with
relatively stronger verbal memory traces for between, and visual traces for within. In line with
this hypothesis, Dual Coding Theory posits that both visual and verbal information can
independently contribute to memory, meaning that items in a visual search task could be encoded
visually and verbally (38). The bilingual extension of Dual Coding Theory further proposes that
bilinguals can encode information via two distinct verbal codes, one for each language, providing
an additional linguistic route in relation to monolinguals (39, 40). To the extent that cross-
linguistic phonological overlap promotes dual-language coding, memory for Spanish competitors
may have been disproportionately guided by verbal (as opposed to visual) representations.
Moreover, this could explain in part the increased role of verbal working memory and language
proficiency in memory for between-language competitors. Altogether, our findings suggest the
effect of between-language competition on visual item memory may vary due to the interaction of
individual cognitive abilities and memory processes like dual-language encoding.

Our findings contribute to the growing body of evidence demonstrating the interactivity of
linguistic and non-linguistic cognitive function, but we note a number of limitations. One
potential limitation of the present study is that the extent of Spanish activation may have been
amplified by cuing participants into the Spanish nature of the task. As part of the recruitment
process participants were asked to indicate their level of Spanish proficiency, which may have
increased the salience of their Spanish knowledge and lowered their threshold for activating
Spanish labels. To minimize this possibility, all instructions and audio were presented in English
following screening. Furthermore, although evidence suggests that brief exposure to a language
can affect subsequent linguistic activation in experimental tasks (41), we did not find that current
exposure to Spanish predicted memory for competitors (whereas Spanish proficiency did). To
provide a more rigorous test of how the relative levels of activation of participants’ two languages
may moderate the extent of cross-linguistic interaction, future studies may experimentally
manipulate the language environment through the use of blocked vs. mixed-language designs.
Another limitation of our study is that the experimental design precluded us from examining
effects of competition on memory for targets. Although the present study was designed to assess
the effects of language activation on memory for competitors, there is reason to expect that the
activation of within- and between-language competitors could influence memory for their
associated targets. If phonological competition results in greater attention to competitor items, it
follows that attention to target items may be reduced and memory for targets could subsequently
suffer. This would be in line with subliminal priming experiments that have demonstrated that
increasing the activation of a phonological competitor can suppress identification of neighboring
target words (42)(see (43) for a review of facilitative and inhibitory effects of lexical neighbors).
Unfortunately, it was not feasible to assess memory for targets in the current study as each target
item was seen and heard three times, each time with a different competitor or control item,
yielding ceiling effects in recognition memory of target items. Therefore, whether phonological
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competition during visual search impacts memory for target items remains a question for further
research.

Our study examined phonological competition induced by overlapping phonemes at onset,
but overlapping phonology can be experimentally manipulated to influence visual attention in
other ways. Rhyme competitors, for example, elicit weaker and later visual attention than cohort
competitors (44), which may impact memory differently than cohort competitors. Other variables
like proportion of overlap (44), covert overlap (45), and multimodal overlap (46) all influence the
strength and timing of competitor visual attention. Beyond phonology, linguistic variables like
neighborhood density (47), morphology (48), and grammatical gender (49) also impact language
processing, and may have downstream effects on attention and memory. Computational models of
both monolingual (50) and bilingual (51) language processing have begun to incorporate this
interactive complexity. Multilink, for example, considers the language, orthography, phonology,
and semantics of a word to make predictions on several psycholinguistic tasks (e.g., lexical
decision, word naming, translation). With the increasing capabilities of computational modeling,
future models could make predictions of visual attention during speech processing, as well as its
effects on memory.

Our study provides evidence of significant interactivity in the cognitive system, not only
across different languages, but also across domains of cognitive function. In contrast to the
modular view that language and memory operate independently of each other (52, 53), our
findings reveal that co-activating linguistic labels when processing speech directly alters how
monolinguals and bilinguals encode visual memories. Extending prior work demonstrating that
language experience can alter perceptual processes (consistent with the linguistic relativity
hypothesis that language shapes perception and thought; (54)), we show that language experience
influences not only how people see their current environment, but also what they remember long
term. This may partially explain why the same event can be remembered differently by different
people, and illustrates how the diversity of experiences in the world can shape higher order
cognitive outcomes.

These results have potential implications for legal, educational, and clinical practices with
linguistically-diverse communities. Eye-witness memory, for example, has been shown to be
subject to language effects in bilinguals (55), but the role of object names in a scene has not been
explored. In clinical populations with memory loss, it may be possible to leverage the effects of
phonological competition to develop strategies for improving memory, such as grouping similar
sounding objects together to facilitate later retrieval. Similarly, overlapping phonology could be
used to inform strategies for learning foreign languages. Our results show that language and
memory are intertwined, and suggest that it may be possible to capitalize on language to address
everyday challenges in other cognitive domains.

Materials and Methods
Participants

Participants were recruited online through the Prolific platform (prolific.co) and
completed the experiment through the Pavlovia (pavlovia.org) and Qualtrics (qualtrics.com)
platforms. Inclusionary criteria for monolinguals consisted of self-reported monolingual status
and no experience with Spanish. Criteria for bilinguals included self-reported bilingual status and
experience with both Spanish and English. All participants reported having normal hearing and no
language related disorders. Audio checks (e.g., typing correct audio to proceed) were done to
ensure participants could hear stimuli clearly. Eleven participants (3 monolinguals, 3 Low-
Spanish bilinguals, 5 High-Spanish bilinguals) were excluded from analyses due to technical
problems or for scores on post-experiment cognitive tests (nonverbal 1Q, verbal working memory)
and vocabulary assessments (LexTALE, LexTale-Esp) that fell two or more standard deviations
below the mean. Eighty-four Spanish-English bilinguals (mean age = 29.3 years; 42 men) and 42
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English monolinguals (mean age = 30.0 years; 19 men) were included in the final analysis (Table

1). During the experiment, participants completed a nonverbal 1Q test (WASI matrix reasoning)

(56) in between experimental tasks. After the experiment, all participants completed the
Language Experience and Proficiency Questionnaire (59), an English vocabulary test

(LexTALE)(58), and a verbal working memory test (digit span subtest of the Comprehensive Test
of Phonological Processing) (59). Bilingual participants additionally completed a Spanish
vocabulary test (Lextale-Esp) (60). Relative to bilinguals, monolinguals reported an earlier age of
acquisition (AoA) for English, higher self-rated English proficiency, and scored higher in English
proficiency. For analyses, Spanish proficiency (LexTale-Esp) was used as a measure of

bilingualism: first as a continuous variable, and then as a categorical variable with three levels

(High-Spanish Bilinguals, Low-Spanish Bilinguals, English Monolinguals). Bilingual participants
were designated as being part of either the Low or High Spanish Proficiency group based on their
LexTale-Esp scores. Compared to Low-Spanish bilinguals, High-Spanish bilinguals had an earlier
AO0A in Spanish and later AoA in English, more current exposure to Spanish and less current
exposure to English, and higher Spanish proficiency. Monolinguals scored higher in verbal
working memory than bilinguals, likely due to the task being in English. There were no

significant group differences in Nonverbal 1Q.
Experiment procedures were approved by the institutional review board of Northwestern

University. Informed consent was obtained from all participants.

Table 1. Participant demographics.

(Digit Span; CTOPP)

High-Spanish | Low-Spanish | English High vs. Low | Bilingual vs.
Measure bilinguals bilinguals Monolinguals | Bilinguals | Monolingual
N 43 41 42
Age 29.6 (5.4) 28.9 (6.9) 30.0 (8.8)
English AocA - -
(LEAP-Q) 7.3 (4.5) 5.1 (4.6) 0.7 (0.7)
Spanish AoA i - -
(LEAP-Q) 1.1(1.1) 4.7 (6.3)
English Exposure % ok -
(LEAP-Q) 23.3 (19.7) 43.8 (27.0) 99.7 (1.0)
Spanish Exposure % i o o
(LEAP-Q) 71.6 (24.2) 53.0 (28.9)
English Proficiency -
(LexTALE) 81.5 (10.3) 82.0 (11.6) 94.1 (6.8)
Spanish Proficiency i - -
(LexTALE-Esp) 95.2 (3.1) 75.5(11.2)
Nonverbal 1Q
(Matrix Reasoning; WASI) 26.0(3.0) 25.2(2.8) 258 (3.1)
Verbal Working Memory 14.2 (3.2) 15.1 (2.6) 17.3 (2.4) ke

Note: Values represent means with standard deviations in parentheses. The last two columns show

t-test comparisons between the two bilingual groups and between bilinguals and monolinguals.

***p < 0.001; **p < 0.01; *p < 0.05.

Design
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We conducted an a priori power analysis for a linear multiple regression random model using
G*Power 3.1 (61). With an assumed power of 0.8, alpha level of 0.05, and H1 p? of 0.14 (based
on (31) and pilot data), the recommended total sample size to obtain a similar effect was 80. To
account for variability in language experience among bilinguals, we doubled the size of the
bilingual group. The study followed a 3 x 3 mixed design with Language Group (High-Spanish
Bilingual, Low-Spanish Bilingual, English Monolingual) as a between-subject variable and
Phonological Competition Type (within-language, between-language, none) as a within-subject
variable. During the encoding phase, participants completed a series of visual search trials in
which they had to identify an English auditory target from a four-item search display. Memory for
critical items (targets, competitors, controls) was later assessed using a surprise recognition test.

Fifteen critical sets were constructed for the four-item search displays in the encoding
phase (see Supplementary Table S5). Each display included a target item (e.g., candle), one of
three possible critical items (competitors and controls), and two unrelated filler items. Critical
items overlapped phonologically with the English target item either in English (e.g., candle-
candy), in Spanish (e.g., candle-candado), or did not overlap in either language (e.g., candle-
wing). During critical search trials, participants saw each set three times: once with the within-
language English competitor, once with the between-language Spanish competitor, and once with
the control (no competition) item (see Fig. 2). Throughout the encoding phase, participants
completed 45 critical trials (15 sets x 3 conditions) and 45 filler trials with no competition for a
total of 90 encoding trials.

Materials

For every critical set, the English target and phonological competitor shared at least two
phonemes at onset (known as cohort competitors). Cohort competitors were chosen over rhyme
competitors for two reasons. First, cohort competitors have been shown to elicit stronger
competition than rhyme competitors (44). Second, cohort competitors are more commaon across
languages than rhyme competitors, which permitted more stringent matching across sets on
phonological and lexical characteristics. Phonemic overlap with the English target was matched
between the within-language (English Competitor) and between-language (Spanish Competitor)
competitor conditions (onset target-competitor overlap of 2.3 and 2.1 phonemes, respectively;
paired p > 0.05). Competitor and control items in critical trials were matched on English
(SUBTLEXUS) (62) and Spanish (SUBTLEX-ESP) (63) frequency, phonological and
orthographic neighborhood size (CLEARPOND) (64), concreteness, familiarity, and imageability
(MRC Psycholinguistic Database, Glasgow Norms) (65-67). Items within a set were controlled
for semantic and physical similarity to avoid confounding factors during encoding.

Items were depicted visually by black and white drawings from the International Picture
Naming Project (IPNP) database (68) or Google Images. Pictures from Google Images were
normed independently for name reliability by English monolinguals and Spanish-English
bilinguals online (Amazon Mechanical Turk, www.mturk.com; Prolific). Name reliability for all
items used in the experiment was 94% (SD = 7.7) in English and 92% (SD = 9.6) in Spanish.
English target words were recorded on Praat (69) at 44.1 Hz on a MacBook Pro by a bilingual
Mexican-American female speaker with no detectable non-native accent in either Spanish or
English.

Procedure

Visual Search Task. Participants first completed a visual search encoding task, during
which their eye movements were remotely tracked using the webcam-based library WebGazer.js
(70) modified for online use in PsychoPy (71). Following instructions for the visual search task,
participants started with three practice trials before completing the 90 experimental trials. Each
trial began with a fixation cross that participants clicked on to center their mouse and gaze. After

Science Advances Manuscript Template Page 12 of 30


http://www.mturk.com/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

clicking, participants saw a four-picture visual display and heard an English auditory target 500
ms after the visual display onset. Participants were instructed to click on the correct target as
quickly as possible. The location of all items was pseudo-randomized, with critical items
(competitors and controls) always appearing adjacent to the target item. Upon clicking, a black
border appeared around the selected item. The visual display remained on screen for 5000 ms
regardless of when the response was made to ensure equal encoding time across trials and
participants. Participants were not informed that their memory for the visual items would be
tested following the search task. Between encoding and retrieval, participants completed the
matrix reasoning subtest of the WASI (56). The subtest served the dual purpose of being a
measure for nonverbal 1Q, as well as a non-linguistic distractor task to prevent primacy and
recency effects during retrieval.

Recognition Memory Task. After the encoding phase and the distractor task, participants
were shown 135 items in a random order and asked to indicate whether they had seen each one
previously. The items included the 45 critical items (15 English competitors, 15 Spanish
competitors, and 15 controls) and 30 target items (15 targets from critical trials and 15 targets
from filler trials) seen during encoding, as well as 60 unseen “foil” items. Each recognition trial
began with the participant clicking a fixation cross in the center of the screen, after which an item
would immediately appear. Participants were instructed to click on a box labeled “OLD” if they
recognized the item from the encoding phase and on a box labeled “NEW” if they did not. After
the experimental tasks, participants completed a Qualtrics survey that included a linguistic
background questionnaire, language vocabulary tests, and a verbal working memory test. All
participants named the critical competitor items in English and bilinguals named competitor items
in English and Spanish. Trials for which participants did not provide the correct competitor label
were removed from analyses (4.1%). There was no significant effect of Language Group for false
alarm recognition of unseen items (F(2, 123) = 1.191, p = 0.307), suggesting no response bias
between groups.

Statistical Analysis

To determine the effects of bilingualism and phonological competition on item memory,
we conducted three sets of analyses looking at gaze, memory, and the effect of gaze on memory.
We analyzed gaze using participants’ eye movements to competitor and control items during the
visual search task (i.e., encoding phase). Memory was analyzed using participants’ recognition
accuracy for those critical items. Finally, we explored the relationship between eye movements
during encoding and subsequent item memory.

Eye movements to each picture in the display were recorded for each millisecond of
critical trials (0 — 5000ms). In preparation for growth curve analyses (29), fixations at each time
point were aggregated across trials into 100ms bins. The proportion of time spent looking at
competitors and controls was first examined with linear mixed-effects models using the R Imer
function from the Ime4 package (72). Competition Type was coded as a categorical predictor
variable with three levels (Within-language English Competitors, Between-language Spanish
Competitors, Control Items) and simple coded to create two contrasts: Controls vs. Within-
language competitors and Controls vs. Between-language competitors.

We ran a series of models including fixed effects of Competition Type and continuous
measures of language experience (self-rated and objective proficiency, exposure, and ages of
acquisition in English and Spanish) to identify the most relevant individual difference measures of
bilingualism. Model summaries and comparisons of (AIC) model fit revealed that a continuous
measure of Spanish Proficiency was the most predictive language experience measure of eye
movements during encoding. Spanish Proficiency was calculated by mean centering LexTale-Esp
scores, with English monolinguals receiving a score of 0 before mean-centering. Significant
interactions with the continuous measure of Spanish Proficiency (see Supplementary Table S6
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and Fig. S1) were subsequently examined in greater detail using GCA and a categorical variable
of Language Group (English monolinguals, Low-Spanish bilinguals, and High-Spanish
bilinguals). Bilingual participants with LexTale-Esp scores below 90 (one standard deviation
below the mean of Spanish L1 speakers in the original validation study (60) and the median in the
present sample) were classified as Low Spanish proficiency bilinguals, while those who scored 90
or above were classified as High Spanish proficiency bilinguals. Language Group was Helmert
coded to create two contrasts: 1. Monolinguals (+0.67) vs. High-Spanish bilinguals and Low-
Spanish bilinguals (-0.33) and 2. High-Spanish bilinguals (-0.5) vs. Low-Spanish bilinguals
(+0.5). Cognitive measures of mean-centered Nonverbal 1Q (NVIQ; matrix reasoning subtest) and
Verbal Working Memory (VWM,; digit span subtest), along with their two- and three-way
interactions with Competition Type and Language Group were included in all models as
covariates. Models of competitor fixations included a random intercept by participant.

We examined the effects of bilingualism and phonological competition on item memory
with generalized linear mixed-effects models using the R glmer function from the Ime4 package
(72). Recognition memory accuracy for critical distractor items (i.e., competitors and controls)
was coded as binomial outcome variable (0 = incorrect, 1 = correct). The recognition memory
model included fixed effects of Competition Type, Language Group, and their interactions with
Verbal Working Memory and Nonverbal 1Q, as well as the maximal random effects structure
justified by the design (73), with random intercepts for participants and stimulus set, and a by-
participant random slope for Competition Type and by-set slopes for Competition Type and
Language Group.

We examined the role of eye movements in item memory by adding a measure of
competitor fixations during encoding as a fixed effect in the memory models. Relative Competitor
Gaze was calculated as the scaled proportion of fixations to either the English or Spanish
competitor minus fixations to their respective control item for each set. As measures of relative
English and Spanish competitor gaze were inherently correlated with each other (due to
comparisons to the same control item within a given set), two separate models were constructed
to examine the effects of gaze on memory for (1) English within-language and (2) Spanish
between-language competitors. Final models therefore included fixed effects of Competition
Type, Language Group, within- or between-language Relative Competitor Gaze, Verbal Working
Memory, Nonverbal 1Q, and all two- and three-way interactions. Random effects included
random intercepts for participants and stimulus set, a by-participant random slope for Competition
Type and by-set slopes for Competition Type and Language Group.
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Supplementary Results
Eye Movements During Encoding

Model comparisons between full and depleted models (dropping each fixed effect and
interactions) showed a significant effect of Competition Type (Likelihood Ratio Test, y*(1) =
48.12, p < 0.001; see Table S6 below for full model output), indicating that fixations differed
between competitors and control items. Additionally, Competition Type had significant
interactions with Spanish Proficiency (x%(2) = 20.65, p < 0.001), Verbal Working Memory (x%(2)
=14.32, p < 0.001), and Nonverbal 1Q (x%(2) = 23.20, p < 0.001), showing that the effect of
phonological competition on eye movements varied by participants’ bilingual experience as well
as their cognitive abilities. Specifically, the effect of within-language competition on fixations
decreased with greater Spanish proficiency as seen by an interaction between the first
Competition Type contrast (Control vs. Within) and Spanish Proficiency (p = 0.007; Fig. S1). In
comparison, the effect of between-language competition on fixations marginally increased with
greater Spanish proficiency as seen by a marginally significant interaction between the second
Competition Type contrast (Control vs. Between) and Spanish Proficiency (p = 0.073). Finally,
we found that higher verbal working memory predicted a smaller within-language competition
effect on fixations (p = 0.009), and higher nonverbal 1Q predicted smaller effects of both within-
(p = 0.016) and between-language competition (p < 0.001) on fixations.

To follow up on the significant interactions between Competition Type and the continuous
measure of Spanish Proficiency, we next examined eye movements using a categorical variable of
Language Group. Changes in fixations over time were also considered by using growth curve
analysis (GCA) with fourth-order orthogonal polynomials (29). The final model included fixed
effects of Competition Type (Controls, Within-language, Between-language), Language Group
(English monolinguals, Low-Spanish Proficiency bilinguals, and High-Spanish Proficiency
bilinguals), as well as their interactions with Verbal Working Memory (VWM), and Nonverbal 1Q
(NVIQ), and all time terms. The model also included a random intercept for subject and by-
subject random slopes for all time terms. Model comparisons with depleted models showed
similar patterns of results as the continuous Spanish Proficiency model, showing a significant
main effect of Competition Type, as well as its significant interactions with Language Group,
Verbal Working Memory, and Nonverbal 1Q (ps < 0.001).

Within-language Competition. Overall, participants spent more time looking at within-
language English competitors than at control items (main effect of Competition Type (Control vs.
Within) on the intercept term; see Fig. 4A in main text and Supplementary Table S2 for full
output). Monolinguals showed a greater within-language gaze effect (i.e., more time looking at
English competitors than controls) than bilinguals, as seen by a significant interaction between the
first Competition Type contrast (Control vs. Within) and the first Language Group contrast
(Estimate = 0.007, SE = 0.002, t = 3.53, p < 0.001). Tukey-adjusted follow-up comparisons
revealed that the effect of English competition was significant for Monolinguals (Estimate = -
0.010, SE =0.012, z = -5.88, p < 0.001) and High-Spanish bilinguals (Estimate = -0.004, SE =
0.001, z =-2.80, p = 0.014), and marginal for Low-Spanish bilinguals (Estimate = -0.003, SE =
0.001, z =-2.22, p = 0.068).

In addition to effects of Competition and Language on the overall proportion of fixations,
interactions between Competition Type (Control vs. Within) and Language Group (Monolinguals
vs. Bilinguals) on the linear (Estimate = 0.023, SE =0.012, t = 1.98, p = 0.047) and cubic
(Estimate =-0.029, SE = 0.012, t =-2.44, p = 0.015) time terms indicated that the pattern of
fixations across the time window varied by phonological overlap and bilingual experience (see
Fig. 4 in main text). Pairwise comparisons of linear trends (capturing the overall rate of increase
or decrease in fixations over time) revealed that for monolinguals, fixations to control objects
(Linear Trend Estimate = -0.02, SE = 0.01) declined more rapidly than to English competitors
(Estimate = -0.003, SE = 0.01; z = 1.40, p = 0.160), while for bilinguals, competitor fixations
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(Estimate = -0.01, SE = 0.01) declined more rapidly than control fixations (Estimate = -0.004, SE
=0.01; z=-1.47, p = 0.142). Pairwise comparisons of cubic trends (capturing the sharpness of
curves around two inflection points) revealed that for monolinguals, sigmoidal curvatures were
marginally steeper for controls (Estimate = 0.03, SE = 0.01) than English competitors (Estimate =
0.01, SE =0.01, z=-1.75, p = 0.081), while for bilinguals, curvatures were marginally steeper for
competitors (Estimate = 0.03, SE = 0.01) than controls (Estimate =0.02, SE=0.01,z=1.78,p =
0.075). Together, these effects indicate that while both monolinguals and bilinguals exhibited a
pattern of initial competitor activation followed by de-activation and then reactivation (resulting
in two competitor peaks), the effect of English competition increased over time for monolinguals,
but decreased over time for bilinguals.

Between-language Competition. We found that High-Spanish bilinguals showed a greater
between-language competition effect on fixations than Low-Spanish bilinguals (interaction
between second Competition Type contrast and second Language Group contrast: Estimate = -
0.010, SE =0.002, t =-4.89, p < 0.001). Tukey-adjusted follow up comparisons of estimated
marginal means showed a significant between-language gaze effect for High-Spanish bilinguals
(Estimate = 0.007, SE = 0.001, z = 4.61, p < 0.001; see Fig 4A in main text), but not for
Monolinguals (Estimate = -0.001, SE = 0.001, z = -0.480, p = 0.881) or Low-Spanish bilinguals
(Estimate =-0.003, SE = 0.001, z = -1.957, p = 0.123). There were no significant group
differences in looks towards controls (ps > 0.1), but High-Spanish bilinguals spent more time
looking at Spanish competitors compared to Low-Spanish bilinguals (Estimate = 0.010, SE =
0.004, z = 2.75, p = 0.017) and marginally more compared to Monolinguals (Estimate = 0.010, SE
=0.004, z = 2.32, p = 0.053), resulting in a greater between-language fixation effect. A significant
interaction between the first Language Group contrast and Competition Type on the linear time
term indicated that the effect of Spanish competition on the rise or fall of fixations over time
differed between monolinguals and bilinguals (Estimate = 0.023, SE = 0.012, z = 1.98, p = 0.047).
For monolinguals, there was a significant increase in competitor fixations over time (Estimate =
0.02, SE =0.01, z=1.99, p = 0.047), as well as a non-significant decrease in control fixations
(Estimate =-0.02, SE =0.01, z = -1.64 p = 0.101). While a similar pattern was observed
for bilinguals, the linear trend was not significant for either competitors (Estimate = 0.004, SE =
0.01, z = 0.55, p = 0.581) or controls (Estimate = - 0.004, SE = 0.01, z = -0.56, p = 0.556). As a
result, the effect of Spanish competition increased over time for monolinguals (Estimate =
0.04, SE =0.01, z = 3.82, p < 0.001), but was relatively stable across time for bilinguals
(Estimate = 0.01, SE =0.01, z= 1.2, p = 0.230). In sum, the influence of between-language
competition on gaze was greater for bilinguals than monolinguals, and this was particularly the
case toward the beginning of the trial.
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954
955  Fig. S1. Effects of phonological competition and Spanish proficiency on item fixations.

956  The effect of between-language competition from Spanish increased with greater Spanish
957  proficiency.
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Table S1. Effects of Competition Type and Language Group on Recognition Memory

Estimate SE z p
(Intercept) -1.18 0.12 -9.44 <0.001
CompTypel (Ctrl vs. Within) 0.58 0.20 2.86 0.004
CompType2 (Ctrl vs. Between) 0.34 0.18 192 0.056
LangGroupl (Mono vs. Bi) -0.08 021 -0.37 0.715
LangGroup2 (High vs. Low Bi) -0.12 0.21 -0.55 0.585
VWM -0.16 0.09 -1.70 0.090
NVIQ 0.16 0.08 2.02 0.044
CompTypel:LangGroupl 0.08 022 036 0.722
CompType2:LangGroupl 0.01 0.21 0.05 0.965
CompTypel:LangGroup2 -0.35 023 -154 0.124
CompType2:LangGroup2 -0.39 022 -180 0.072
CompTypel:VWM -0.02 0.10 -0.22 0.823
CompType2:VWM 0.11 0.10 1.06 0.288
LangGroupl:VWM -0.27 021 -132 0.188
LangGroup2:VWM 0.17 0.21 0.82 0.412
CompTypel:NVIQ 0.16 0.09 1.80 0.072
CompType2:NVIQ 0.09 0.09 1.07 0.285
LangGroupl:NVIQ -0.17 0.17 -1.02 0.309
LangGroup2:NVI1Q -0.19 0.20 -0.94 0.347
CompTypel:LangGroupl:VWM -0.28 0.23 -1.23 0.219
CompType2:LangGroupl:VWM -0.56 0.23 -247 0.014
CompTypel:LangGroup2:VWM -0.08 0.23 -0.36 0.722
CompType2:LangGroup2:VWM -0.08 0.23 -0.33 0.739
CompTypel:LangGroupl:NVIQ -0.01 0.19 -0.04 0.971
CompType2:LangGroupl:NVIQ 0.11 0.18 0.61 0.544
CompTypel:LangGroup2:NVIQ -0.15 0.22 -0.70 0.487
CompType2:LangGroup2:NVIQ 0.01 021 0.05 0.962

The generalized linear mixed-effect model on recognition memory accuracy included fixed
effects of Competition Type (contrast 1: Controls vs. Within-language competitors; contrast 2:
Controls vs. Between-language competitors), Language Group (contrast 1: Monolinguals vs.
Bilinguals; contrast 2: Low-Spanish bilinguals vs. High-Spanish bilinguals), Verbal Working
Memory, Nonverbal 1Q, and all two- and three-way interactions. The final model also included

random intercepts for Participant and Set, as well as a by-participant random slope for

Competition Type and by-set random slopes for Competition Type and Language Group.
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966  Table S3. Effects of Relative Competitor Gaze on English Competitor Recognition Memory

Estimate SE z p
<
(Intercept) -1.59 0.17 -9.58 0.001
CompType (Within) 0.61 0.23 2.66 0.008
LangGroupl (Mono vs. Bi) -0.08 026 -0.32 0.748
LangGroup2 (High vs. Low Bi) 0.00 0.27 -0.01 0.991
VWM -0.24 0.12 -1.96 0.050
NVIQ 0.04 0.11 0.35 0.725
RelativeCompGaze (Within) -0.03 0.07 -0.43 0.665
CompTypeWithin:LangGroupl 0.09 0.22 0.40 0.690
CompTypeWithin:LangGroup2 -0.12 0.24 -048 0.632
CompTypeWithin:VWM 0.05 0.11 0.50 0.619
CompTypeWithin:NVIQ 0.25 0.10 2.57 0.010
CompTypeWithin:RelativeCompGaze 0.20 0.09 2.23 0.026
LangGroupl:VWM -0.04 0.28 -0.13 0.899
LangGroup2:VWM 0.10 0.27 0.37 0.713
LangGroupl:NVIQ -0.28 0.24 ~ -1.18 0.237
LangGroup2:NVI1Q -0.28 025 -1.10 0.271
LangGroupl:RelativeCompGaze 0.18 0.14 1.24 0.217
LangGroup2:RelativeCompGaze -0.09 0.16 -0.56 0.575
CompTypeWithin:LangGroupl:VWM -0.25 025 -1.03 0.304
CompTypeWithin:LangGroup2: VWM 0.01 0.25 0.04 0.967
CompTypeWithin:LangGroupl:NVIQ 0.11 0.21 0.54 0.588
CompTypeWithin:LangGroup2:NVIQ 0.02 0.23 0.07 0.942

CompTypeWithin:LangGroupl:RelativeCompGaze -0.11 0.19 -0.58 0.562
CompTypeWithin:LangGroup2 RelativeCompGaze 0.26 0.22 1.19 0.235
967  The generalized linear mixed-effect model on recognition memory accuracy for within-language
968  competitors included fixed effects of Competition Type (Within), Language Group (contrast 1:
969  Monolinguals vs. Bilinguals; contrast 2: High-Spanish bilinguals vs. Low-Spanish bilinguals),
970  Relative Competitor Gaze (Within), Verbal Working Memory, Nonverbal 1Q, and all two- and
971 three-way interactions. The final model also included random intercepts for Participant and Set, as
972  well as a by-participant random slope for Competition Type and by-set random slopes for
973  Competition Type and Language Group.
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Table S4. Effects of Relative Competitor Gaze on Spanish Competitor Recognition Memory

Estimate SE z p
<
(Intercept) -1.55 0.16 -9.75 0.001
CompType (Between) 0.33 0.17 1.91 0.056
LangGroupl (Mono vs. Bi) -0.20 027 -0.72 0.471
LangGroup2 (High vs. Low Bi) 0.14 0.27 0.50 0.614
VWM -0.22 0.12 -1.74 0.081
NVIQ 0.09 0.11 0.78 0.435
RelativeCompGaze (Between) -0.12 0.07 -1.75 0.081
CompTypeBetween:LangGroupl 0.13 0.22 0.60 0.548
CompTypeBetween:LangGroup2 -0.53 023 -2.27 0.023
CompTypeBetween:VWM 0.13 0.11 1.14 0.252
CompTypeBetween:NVIQ 0.07 0.10 0.72 0.469
CompTypeBetween:RelativeCompGaze 0.24 0.09 2.60 0.009
LangGroupl:VWM -0.13 029 -046 0.648
LangGroup2:VWM 0.13 0.27 0.47 0.639
LangGroupl:NVIQ -0.38 0.25 -154 0.123
LangGroup2:NVI1Q -0.13 0.26  -0.52 0.607
LangGroupl:RelativeCompGaze 0.14 0.15 0.89 0.371
LangGroup2:RelativeCompGaze -0.04 0.15 -0.24 0.812
CompTypeBetween:LangGroupl:VWM -0.47 0.25 -1.88 0.060
CompTypeBetween:LangGroup2:VWM 0.04 0.25 0.14 0.886
CompTypeBetween:LangGroupl:NVIQ 0.28 0.21 1.32 0.188
CompTypeBetween:LangGroup2:NVIQ 0.02 0.23 0.07 0.943
CompTypeBetween:LangGroupl:RelativeCompGaze -0.32 021 -153 0.125
CompTypeBetween:LangGroup2:RelativeCompGaze -0.14 0.21 -0.67 0.506

Note. The generalized linear mixed-effect model on recognition memory accuracy for between-
language competitors included fixed effects of Competition Type (Between), Language Group
(contrast 1: Monolinguals vs. Bilinguals; contrast 2: High-Spanish bilinguals vs. Low-Spanish
bilinguals), Relative Competitor Gaze (Between), Verbal Working Memory, Nonverbal 1Q, and
all two- and three-way interactions. The final model also included random intercepts for
Participant and Set, as well as a by-participant random slope for Competition Type and by-set
random slopes for Competition Type and Language Group.
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Table S5. Phonological Overlap Stimulus Sets. (Note. ‘v’ and ‘B’ are represented by the same
phoneme in Spanish: /b/.)

Target Competitor Fillers
Within- Between-
language language Control Filler 1 Filler 2

1 battery backpack glass helmet screwdriver | tire
(pila) (mochila) (vaso) (casco) (desarmador) | (llanta)
beetle beans mustache grapes skate vacuum

2 (escarabajo) (frijoles) (bigote) (uvas) (patin) (aspiradora)
bone bow fireman ladder onion queen

3 (hueso) (morio) (bombero) (escalera) (cebolla) (reina)
candle candy lock wing screw net

4 (vela) (dulces) (candado) (ala) (tornillo) (red)

5 cheese cheerleader gum strawberry mop wheel
(queso) (porrista) (chicle) (fresa) (trapeador) (rueda)
clock clown nail mirror barbecue fork

6 (reloj) (payaso) (clavo) (espejo) (asador) (tenedor)

7 corkscrew corn tie jar wig deer
(sacacorchos) | (maiz) (corbata) (frasco) (peluca) (venado)
fly flashlight arrow wheelchair pumpkin wrench

8 (mosca) (linterna) (flecha) (silla de ruedas) | (calabaza) (llave)

9 goat ghost drop bread ashtray tongue
(cabra) (fantasma) (gota) (pan) (cenicero) (lengua)

10 lightning lighter pencil spoon owl mushroom
(rayo) (encendedor) (lapiz) (cuchara) (buho) (hongo)

1 magnet mouse hand duck watermelon | knife
(imén) (raton) (mano) (pato) (sandia) (cuchillo)

12 plunger plug feather vest needle carrot
(desatascador) | (enchufe) (pluma) (chaleco) (aguja) (zanahoria)

13 table tape roof window diaper sword
(mesa) (cinta) (techo) (ventana) (pafial) (espada)
team teacher shark glasses arm rain

14 (equipo) (maestra) (tiburdn) (lentes) (brazo) (luvia)

15 toes toys bull rabbit eqgg mermaid
(dedos) (Juguetes) (toro) (conejo) (huevo) (sirena)
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987  Table S6. Effects of Competition Type and Spanish Proficiency on Item Fixations during
988 Encoding

Estimate SE t p
(Intercept) 0.0369 0.0016 23.71 <0.001
VWM -0.0016 0.0016 -1.01 0.316
NVIQ 0.0004 0.0015 0.25 0.804
CompTypel (Ctrl vs. Within) 0.0059 0.0009 6.31 <0.001
CompType2 (Ctrl vs. Between) 0.0006 0.0009 0.66 0.511
SpanishProf 0.0014 0.0016 0.86 0.393
VWM: CompTypel -0.0025 0.0010 -2.62 0.009
VWM:CompType2 0.0010 0.0010 1.06 0.289
NVIQ:CompTypel -0.0021 0.0009 -2.41 0.016
NVIQ:CompType2 -0.0042 0.0009 -4.82 <0.001
VWM:SpanishProf 0.0004 0.0017 0.22 0.830
NVIQ:SpanishProf -0.0023 0.0015 -1.49 0.140
CompTypel:SpanishProf -0.0026 0.0010 -2.72 0.007
CompType2:SpanishProf 0.0017 0.0010 1.80 0.073
VWM:CompTypel:SpanishProf -0.0005 0.0010 -0.53 0.596
VWM:CompType2:SpanishProf -0.0001 0.0010 -0.05 0.957
NVIQ:CompTypel:SpanishProf -0.0012 0.0009 -1.31 0.189
NVIQ:CompType2:SpanishProf -0.0013 0.0009 -1.40 0.163

989  The final linear mixed-effect model on competitor eye movements included fixed effects of

990 Competition Type (contrast 1: Controls vs. Within-language competitors; contrast 2: Controls vs.
991 Between-language competitors), Spanish Proficiency (mean centered LexTALE-Esp score),

992  Verbal Working Memory (VWM), and Nonverbal 1Q (NVIQ). The final model also included a
993 random intercept by participant.

994
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995 Table S2. GCA
996 Due to its size, Table S2 can be found in the Other Supplementary Materials as an Excel file.
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